Reparametrization of asymmetric logistic function

For simplicity of the reparameterization, the asymptote parameters L_L and L_U of the original Richard's Curve (Eq 1) can be omitted and substitutions b = -B and $1/v = -e^{-c}$ were made such that all parameters may be real numbers (Eq 2).

$$f(x) = L_L + \frac{L_U - L_L}{(1 + e^{-B(m-x)})^{1/v}}$$

$$L_L, L_U, B, m \in \mathbb{R}$$

$$v \in \mathbb{R}_{>0}$$

$$(1)$$

In (3) the symmetry is already parametrized exactly as in the final result ((9)): As it increases, the inflection point I_y moves towards the upper limit. At c = 0 it lies centered between the limits.

$$f(x) = \frac{1}{(1 + e^{-b(a-x)})^{e^{-c}}}$$

$$a, b, c \in \mathcal{R}$$
(2)

In the following steps a and b are reparametrized in terms of the x-coordinate of the inflection point I_x and the slope S at the inflection point respectively. I_x was obtained by solving the second derivative of the a, b, c parametrization in Eq 2 for a in Eq 3:

$$f''(I_x) = 0$$

$$\Leftrightarrow I_x = a - \frac{c}{b}$$

$$\Leftrightarrow a = I_x + \frac{c}{b}$$
(3)

The slope parameter was obtained by substituting x in the first derivative of the a, b, c parametrization in Eq 2 with the analytical solution for I_x from Eq 3.

$$S = f'(I_x)$$

$$\Leftrightarrow S = b(e^c + 1)^{-1 - e^{-c}}$$
(4)

Substituting a in Eq 2 with $a(I_x, b, c)$ from Eq 3 yields a parametrization in terms of I_x, b, c (Eq 5):

$$f(x) = \left(e^{b(I_x - x + \frac{c}{b}) + 1}\right)^{-e^{-c}}$$

$$I_x, b, c \in \mathcal{R}$$
(5)

For a parametrization in terms of both I_x and S, their equations from Eq 3 and Eq 4 must be solved for a and b:

$$a = \frac{I_x e^c}{e^c + 1} + \frac{I_x}{e^c + 1} + \frac{c(e^c + 1)^{-1 - e^{-c}}}{S}$$

$$b = S(e^c + 1)^{(e^c + 1)e^{-c}}$$
(6)

A parametrization in terms of I_x , S, c is then obtained by substitution of a an b in Eq 2:

$$f(x) = (e^{(e^c+1)^{(e^c+1)e^{-c}} \cdot (I_x S - Sx + c(e^c+1)^{-(e^c+1)e^c})} + 1)^{-e^{-c}}$$

$$I_x, S, c \in \mathcal{R}$$
(7)

By common subexpression elimination Eq 7 simplifies to Eq 8.

$$f(x) = (e^{x_2 \cdot (I_x S - Sx + \frac{c}{x_2})} + 1)^{x_1}$$

$$x_0 = e^c + 1$$

$$x_1 = e^{-c}$$

$$x_2 = x_0^{x_0 \cdot x_1}$$

$$I_x, S, c \in \mathcal{R}$$
(8)

The final generalized parametrization in Eq 9 in terms of L_L, L_U, I_x, S, c was obtained by scaling slope parameter and function value with $L_U - L_L$ and shifting by L_U .

$$f(x) = L_{L} + \frac{L_{U} - L_{L}}{(e^{s_{2} \cdot (s_{3} \cdot (I_{x} - x) + \frac{c}{s_{2}})} + 1)^{s_{1}}}$$

$$s_{0} = e^{c} + 1$$

$$s_{1} = e^{-c}$$

$$s_{2} = s_{0}^{(s_{0} \cdot s_{1})}$$

$$s_{3} = \frac{S}{L_{U} - L_{L}}$$

$$L_{L}, L_{U}, I_{x}, S, c \in \mathbb{R}$$

$$(9)$$

The corresponding Python implementation is shown in Code 1. For a step by step derivation of Eq 9, as well as its inverse using sympy we refer to the "Background Asymmetric Logsitc" Jupyter notebook in the calibr8 repository [1].

Code 1. Implementation of reparameterized asymmetric logistic function.

```
def asymmetric_logistic(x, theta):
        """5-parameter asymmetric logistic model.
2
        Parameters
4
        _____
        x : array-like
            independent variable
        theta : array-like
            parameters of the logistic model
                L_L: lower asymptote
                L_U: upper asymptote
11
                I_x: x-value at inflection point
                S: slope at the inflection point
13
                 c: symmetry parameter (0 is symmetric)
15
        Returns
16
17
        y : array-like
18
            dependent variable
19
20
        L_L, L_U, I_x, S, c = theta[:5]
21
        # common subexpressions
22
        s0 = numpy.exp(c) + 1
23
        s1 = numpy.exp(-c)
24
        s2 = s0 ** (s0 * s1)
25
        # re-scale the inflection point slope with the interval
26
        s3 = S / (L_U - L_L)
27
28
        x = numpy.array(x)
        y = (numpy.exp(s2 * (s3 * (I_x - x) + c / s2)) + 1) ** -s1
30
        return L_L + (L_U-L_L) * y
```

References

 Osthege M, Helleckes L. JuBiotech/calibr8: v6.2.0; 2021. Available from: https://doi.org/ 10.5281/zenodo.5721015.